ASSESSMENT OF PULMONARY FUNCTION IN PRESCHOOL CHILDREN

Main image:
Leslie Banks
istockphoto
ASSESSMENT OF PULMONARY FUNCTION IN PRESCHOOL CHILDREN
S. Sonnappa and P. Aurora

Pulmonary function tests (PFT) are increasingly used in preschool children for clinical assessment and monitoring early childhood respiratory diseases. However, objective assessment of pulmonary function in children aged 2–6 yrs represents a major challenge. Children in this age group are too old to sedate but are unable to cooperate actively in many of the physiological manoeuvres required for the PFT. They need to be constantly engaged and encouraged by the operator to participate in the test and produce technically viable results, as they are easily distracted.

Despite these challenges, a wide range of PFTs has been successfully performed in preschool children in suitable measurement conditions. These include: incentive spirometry, specific airway resistance (s_{raw}) measured in a plethysmograph, interrupter resistance (R_{int}), forced oscillation technique (FOT), functional residual capacity (FRC) using gas dilution techniques, and measurements of gas-mixing indices by multiple breath washout. In recognition of these attempts, an American Thoracic Society (ATS)/European Respiratory Society (ERS) statement on pulmonary function testing in preschool children has recently been published [1].

An overview of some of the techniques currently used to measure pulmonary function in the preschool child is presented here.

Spirometry

Spirometry is the most frequently used method for measuring lung function. There is increasing evidence that preschool children are able to perform technically acceptable spirometry. However, these children have difficulty meeting some of the quality-control criteria outlined in the ATS/ERS guidelines for older children and adults. To perform spirometry, the older child or adult must inspire to total lung capacity (TLC), exhale forcefully to residual volume (RV), and repeat the manoeuvre several times until reproducible flow–volume curves are evident. Young preschool children have small absolute lung volumes and large airway size relative to lung volume compared with older children and adults. Forced expiration is therefore completed in a short time, certainly more quickly than the 6 s recommended for adults, but sometimes more quickly even than 1 s. Therefore, the forced expiratory volume in one second (FEV1) may not be an accurate index of bronchial obstruction in this age group. Recent studies have explored the utility of forced expiratory volumes in 0.5 s (FEV0.5) or 0.75 s (FEV0.75) as outcome measures in this age group.
Success in achieving maximal forced expiration in preschool children may be increased by use of incentive spirometry computer programs (fig. 1). These programs display interactive cartoon games in which the object of the game is achieved if the subject produces a complete forced expiration. However, it is not essential to use incentives as investigators have achieved acceptable preschool data using only verbal training and encouragement. Visual inspection of the flow–volume and volume–time curves is essential for quality control. Preschool subjects are more likely to produce technically inadequate expirations than older subjects, and are also likely to become bored or tired if the test session is prolonged unnecessarily. It is therefore advantageous if the operator is able to visualise these curves on screen, or at least before the next effort (fig. 2).

Plethysmographic measurement of specific airway resistance

Plethysmographic measurement of s_{Raw} may serve to assess lung function in children from 2 yrs of age. Measurements are obtained during normal tidal breathing without requiring reproducible forced manoeuvres as in spirometry; the technique requires only the passive cooperation of the conscious preschool child. Assessment of s_{Raw} in preschool children is fundamentally based on a method introduced by DuBois in 1956 [2]. In DuBois’ original method, airway resistance (Raw) was calculated by Boyle’s law. However this method requires measurement of FRC during a shutter occlusion and some preschool children find this difficult. Most preschool labs therefore use the modified calculation described by Das and Alexander [3] in 1976, where s_{Raw} is measured directly. s_{Raw} reflects the overall dimensions of the airways, including the influence of lung volume on airway calibre. As s_{Raw} is the product of Raw and FRC, it does not discriminate if improvements or deteriorations are caused by either component. Any change in Raw or FRC or both results in abnormal s_{Raw}. s_{Raw} is therefore more sensitive than Raw, as demonstrated in asthmatics and healthy children. s_{Raw} measurements have been successfully adapted and approved for use in preschool children in a number of studies in asthma and cystic fibrosis. Measurements employ a constant-volume whole-body plethysmograph, which in principle is a sealed cabin built for use with adults (fig. 3). s_{Raw} measurements performed with commercially available electronic body temperature and pressure, saturated (BTPS) compensation exhibit positive frequency dependency. When electronic BTPS compensation is used, measurements should be made at breathing frequencies of...
ClevAir® – for clever and safe home ventilation

- Modular system for more flexibility
- “Clever Safe” provides safe ICU quality ventilation in any setting.
- Large color touch screen
- Easy to use
- Wide range of ventilation modes (CPAP, PSV ST, ASS PCV, ASS VCV, SIMV)

Discover the new modular home ventilator ClevAir® at our ERS stand B07 41.

www.mpv-truma.com
C.freiberg@mpv-truma.com
30–45 breaths·min⁻¹, which will also reduce the risk of disturbance caused by irregular breathing. Most children aged 2–3 yrs usually breathe at the required frequency spontaneously, but coaching of children aged >3 yrs may be required. An increase in breathing frequency and flow results in an unacceptable increase in s_{Raw} (fig. 4). s_{Raw} is calculated as the median value of five technically satisfactory specific resistance loops. Despite being an important assessment of pulmonary function, the body plethysmograph is bulky and expensive, a factor that restricts the availability of such tests to specialised centres.

Interrupter technique

The measurement of airway resistance using the interrupter technique (R_{int}) is currently in routine use in several laboratories for the evaluation of lung function in preschool children, both as a research and as a clinical tool. It is particularly useful in preschool children as it is effort-independent and noninvasive, requires minimal cooperation and is able to detect changes in airway calibre. R_{int} measurements may be obtained using plethysmography or portable equipment such as the Micro R_{int} machine using a flowmeter, a pressure measurement device, and a flow interruption system. The principle of the interrupter technique is that, during a sudden airflow interruption at the mouth, alveolar pressure and mouth pressure (P_{mo}) will rapidly equilibrate. R_{int} is defined as this pressure divided by the airflow measured immediately before interruption. The clinical interpretation of the interrupter resistance in preschool children has recently been made easier by the availability of reference values for this age group. R_{int} measurements appear to be most useful in the assessment of bronchodilator responsiveness, where it is found to be as sensitive as spirometry. Several studies have shown the usefulness of the interrupter technique in evaluating airway response to methacholine in asthmatic preschool children, although its sensitivity has been reported to be lower than that of body plethysmography.

Forced oscillation technique

The FOT, or impulse oscillometry, requires minimal cooperation as it is performed during tidal breathing and is therefore useful to measure airway function in preschool children. A number of studies have demonstrated that the FOT is able to identify airway obstruction and responses to bronchodilators and bronchoconstrictors. It measures respiratory impedance (Z_{rs}) and respiratory reactance (X_{rs}), thereby differentiating between resistive and elastic elements during tidal breathing. Measurements of respiratory impedance have a potential role in the measurement of changes in lung mechanics in young children. The technique involves applying positive and negative pressure oscillations and flow impulses generated by a loudspeaker to the respiratory system (lungs and chest wall) during tidal breathing. The resultant peaks in maximal impulse pressure and flow signals are measured and used to calculate resistance, reactance and impedance. The pressure oscillations may be applied at single or multiple ranges of frequencies and the response of the lungs depends on the frequency of the applied pressure oscillation. The lower frequencies (1–2 Hz) primarily reflect the behaviour of the parenchyma while the higher frequencies (>5 Hz) reflect the mechanical properties of the conducting airways. For clinical applications of FOT, it is usual to apply a medium frequency range, 4–20 Hz. FOT is a growing technique and has the potential to improve the diagnosis of airway obstruction, including reversibility and hyperactivity, and thus, monitoring disease progression.

The multiple-breath inert gas washout technique

The multiple-breath inert gas washout (MBW) method estimates distribution of ventilation in the lungs and lung volume during washout of an inhaled mixture of inert gases. Inert gases are harmless and are not absorbed into the body in significant amounts. Several inert marker gases with low solubility in blood and tissues can be used for MBW. The most well known is nitrogen, which can be washed out from the lungs by letting the patient breathe pure oxygen.
PULMONARY FUNCTION IN PRESCHOOL CHILDREN

MicroRint

A simple test for measuring Airway Resistance

- An alternative to spirometry for pre-school age children
- Rapid, non-invasive inspiratory and expiratory measurements
- Rint module available as an option for MicroLab and MicroLoop
- 1000 + patient test memory
- Pre and post medication comparisons with predicted values
- Direct result printout
- Rida Airway Resistance database and analysis software option

Product Information

- www.micromedical.co.uk
- Phone: +44 (0) 1634 893500

MasterScreen IOS

High-end oscillometry offered by VIASYS allows determination of airway resistance and lung reactance almost without any cooperation of the patient, by simple and immediate measurement of normal tidal breathing.

Applicable in patients from early childhood to all ages.

- Determination of airway resistance and lung reactance
- Differentiation between central and peripheral airways
- Early detection and classification of asthma and COPD
- Spirometry and flow/volume for complete lung function test
- Newest option: Detection of expiratory flow limitation (EFL) during tidal breathing

Product Information

- www.viasyshealthcare.com
- Phone: +49 (0) 931 4972 0
Other gases, such as argon, helium, or sulphur hexafluoride (SF₆), may also be used, but measuring these gases may require expensive equipment, such as a mass spectrometer. A number of parameters can be derived from this technique. The two reported from our laboratory are: the lung clearance index (LCI), which is calculated as the cumulative expired gas volume required to lower the end-tidal tracer gas concentration to 2.5% of its starting concentration, divided by the resting lung volume/FRC; and the mixing ratio (MR), which is calculated from the ratio between the ideal and actual number of breaths needed to lower the end-tidal tracer gas concentration to a specified level. Other centres also report moment ratios. This technique has been successfully adapted for use in infants and young children, who are simply required to breathe through a mask or mouthpiece for 2–3 min. No special manoeuvres are required and measurements can be repeated after 5–10 min. The child is asked to breathe the gas through a face mask (fig. 5) until the lungs are equilibrated with this mixture – the wash-in phase (fig. 6). The gas supply is then removed, and the child breathes air. Any inert gas in the child’s lungs at the end of the wash-in period will therefore be cleared over a number of breaths when the gas supply is removed. The change in concentration of inert gas through this washout period is monitored. The washout continues until the concentration of expired inert gas has fallen to 2.5% of the initial concentration.
Lung Function
by GANSHORN

Gaining control of your lung function diagnostics!

- Cooperation free lung function
- Ergospirometry, stress testing
- Spirometry
- Oscillatory resistance
- CO-Diffusion
- Bodylethysmography
- Aerosol-provocation

Since nearly 25 years
GANSHORN develops and manufactures high quality and easy to use lung function diagnostic equipment.

Many of our innovations and patents have set the trend and are accepted standards today.

Reliability and customer service are our highest priorities with worldwide sales- and service-centres.

Please feel free to contact us!

Because good decisions require precise information

GANSHORN
M E D I Z I N E L E C T R O N I C
Industriestraße 6 - 8 · D - 97618 Niederlauer/Germany
Phone: +49 9771/62 22-0 · Fax: +49 9771/62 22-55
e-mail: sales@ganshorn.de · www.ganshorn.de
PowerCube-ROS

- Cooperation free determination of airway resistance
- No breathing manoeuvres requested
- The PowerCube-ROS is ideal for the measurement of children!
- Oscillating volume only 5 ml – fixing of the cheeks not necessary
- Easy to handle - no special instruction required by staff
- Discrete measurement frequencies of 5, 10, 20, 30, 40 Hz
- Spirometry / flow-volume included in the basic equipment

PowerCube-Body

- Solid cabin construction for precise measurements
- Easy handling due to user friendly software LF8
- Stable and wide seating bench providing large legroom
- Calibration free ultrasonic flow transducer available
- Automatic calibration of cabin- and mouth-pressure BodyLivecal (patented)
- With PO.1/Pmax, ROCC, Spirometry, Flow/Volumemeasurement
- Options like CO-Diffusion, Rhinomanometry etc.

PowerCube-Ergo

- State-of-the-art-technology for cardiopulmonary exercise testing!
- Completely adapted to meet the special requirements of ergospirometry
- Pneumotach absolutely insensitive to moisture and water drops (sweat, saliva)
- Quick response times and highly accurate measuring values of the gas-analysers: ideal conditions for real “breath by breath” measurements
- Easy and intuitive use of the software
- Combination with nearly any bicycle/ treadmill /ECG possible
- Option: LF-Sport – finally breath-by-breath visually combined with lactate and training calendar!

SpiroJet

- The know-how of a laboratory pulmonary function system in a low budget compact format!
- For spirometry, flow/volume and MVV-measurement according to the ATS/ERS-guidelines
- Large scale animation programs for patient motivation and cooperation control
- Easy and intuitive use of the software
- High quality accessories for maximum precision and easy cleaning
- Safeguarding the future – compatible with the GANSHORN-PowerCube-equipment!
original value (fig. 7). Analysis of the change in SnIII slope through the washout can give information as to the location of airways disease and the contributions from conductive (Scond) and acinar (Sacin) zones to total inhomogeneity can be estimated. The MBW method appears to be particularly useful as a tool to evaluate lung function in preschool children because it requires only passive cooperation and tidal breathing. Currently, MBW is performed routinely in preschool children in only a limited number of laboratories, presumably because suitable equipment is not commercially available.

Clinical implications

It is increasingly recognised that even young preschool children can perform various PFTs. Little doubt exists about the value of these tests in clinical and epidemiological research. However, the influence of these tests on the clinical management in an individual child is still debatable as it is a growing field and most of these tests are not yet standardised for use in this age group.

Conclusions

Measurement of lung function in preschool children is now feasible. It is difficult to answer the question “Which test is best in the preschool age group?” As with the other age groups, one test will not answer all questions. Systematic studies using a range of tests are needed before a place for each can be ascertained.

FURTHER READING

MPV TRUMA GmbH – Micro Drop Pro

MicroDrop Pro aerosol nebuliser for professional inhalation treatments.

In a test conducted by Stiftung Warentest (independent test institute for end users) the device was rated one of the best inhalators in Germany. Test criteria were handling, performance and functionality. Good marks for the MicroDrop Pro in every category.

The MicroDrop Pro also has a very good performance in residual volume and output rate, which makes treatment easy for the patients and their caregivers. Fast drug delivery and a nebuliser that can be opened and filled easily guarantee for comfortable inhalation. The Pro nebulizer is also very easy to clean and disinfect.

The MicroDrop Pro can be used by patients of all ages and is also suitable for tracheostoma patients. With 5 years warranty and a reimbursement number it is the perfect choice for doctors and patients. Delivered with nebulizer, compressor, adult- and child mask and bag.

Phone: +49 (0) 89 - 46 17 23 71

www.mpv-truma.com

Exercise & Pulmonary Function Testing

- Vo2 max and sub-max VO2 Testing
- Accurate measurement of Resting Energy Expenditure (REE, RMR, BMR)
- Full Spirometry (FVC, SVC, MVV, Broncho-Challenge)
- Multiple scores for Cardio Vascular Risk analysis
- Affordable, portable, compact and easy to use
- Built-in application for developing individual Weight Management programs
- Includes Body Composition and Standard measurements

NEW

www.cosmed.it

Hand-Held Spirometer

- FVC, SVC, MVV, bronchial challenge tests
- 6MWT including VE, RF and Spo2 measurements
- Encouragement display for pediatric application
- Available with turbine or disposable pneumotach
- Graphic high resolution display
- Direct printout through USB printers
- PC Software for data download and real time testing

NEW

www.cosmed.it
nSpire Health
Redefining Accuracy. Beyond the Standard.

REvolutionizing the way the world detects and treats respiratory diseases

- ZAN® Mesgeräte
- PiKo® Monitors
- Collins® Pulmonary Diagnostics
- WRIGHT™ Respirometers
- KOKO® Spirometry
- POCKET™ Asthma Care

Asthma Management
- Medication Chamber
- Disease Management
- Pocket Spirometer

Spirometry
- Spiro Incentives
- Challenge Testing
- Airways Resistance
- Rhinomanometry
- EMR Connectivity
- Digital Breath Sounds

Pulmonary Diagnostics
- Spirometry
- Lung Volumes
- CO Diffusion
- CPET with Stress ECG
- Nutritional Assessment
- Connectivity

Clinical Research Solutions
- Centralized Spirometry
- Pulmonary Diagnostics
- Challenge Testing
- Data Management
- E-Diary
- Home Monitoring

Get Inspired!

Contact:
+44 (0) 1992 526300 UK
+49 (0) 97 36 8181 0 Germany
+1 (303) 666 5555 USA

www.nspirehealth.com
www.zan.de

formerly Ferraris Respiratory
Vitalograph® asma-1
Monitoring asthma has never been easier!

- Measures FEV₁ as well as peak flow
- Simple to use
- Large, easy to read display
- Electronic record – no need for record cards
- Automatically assesses test quality
- Quality of blow indicator
- More accurate than a mechanical meter
- FEV₁ has less diurnal variability than PEF
- PEF/FEV₁ zones can be personalised
- Stores 600 test sessions
- Detachable flow head makes cleaning simple

For more information on the asma-1 call +44 (0) 1280 827 120

Email: sales@vitalograph.co.uk
www.vitalograph.co.uk
Vitalograph Filters

Vitalograph's new white bacterial viral filter is designed to fit most laboratory spirometers including SensorMedics, Jaeger and PK Morgan models. Made to the same exacting standards as Vitalograph’s original blue BVF, the white BVF is highly effective and great value.

All Vitalograph bacterial viral filters are fully disposable and feature static attraction technology that traps even sub-micron sized microbes, providing 99.99% cross-contamination efficiency for enhanced protection.

The low expiratory flow impedance supports high performance and the ergonomically designed 25mm mouthpiece ensures maximum comfort (other sizes also available).

Vitalograph Mouthpiece/noseclips

The low resistance SafeTway® mouthpieces allows entry of expired air into the measuring system but not back to the test subject, preventing accidental inhalation of pathogens.

The SafeTway is an inexpensive alternative to the bacterial viral filter for expiratory only testing. It fits most pulmonary function test equipment, including peak flow meters. An adaptor may be required.

The Mini SafeTway with a 22mm diameter mouthpiece is designed for paediatric use or for elderly test subjects who have difficulty fitting their mouth properly around the standard mouthpiece size. Long SafeTway mouthpieces that are 50% longer are also available.

Vitalograph nose clips are ergonomically designed for optimum comfort and can feature personalised branding for bulk orders.

Phone: +44 1280 827120
www.vitalograph.co.uk

Vitalograph ALPHA
Effective spirometry – pure & simple

NEW

- Dedicated all-in-one desktop unit
- Simple to use
- Rapid and cost effective testing
- Clear and bright colour screen
- Accurate Fleisch pneumotachograph
- Measures VC, FVC, FEV1, FEV1%, PEF, FEF 25-75
- On-screen visualisation of volume/time and flow/volume curves
- Tests can be stored for serial and pre/post testing
- Presents the test information in clear, easy to read format

For more information call +44 (0) 1280 827 120
or email sales@vitalograph.co.uk
Vitalograph Peak flow meters

The Vitalograph range of peak flow meters includes two mechanical meters, the asmaPLAN and the asmaPLAN+. Both models are highly accurate, compact, lightweight and portable. They feature a comfortable integral mouthpiece and easily read scale markers and can be used by adults and children. Both peak flow meters are suitable for multi-subject use with SafeTway® mouthpieces.

The asmaPLAN+ features patented dual colour sliders to define the asthma management colour zones set by the healthcare professional. Variability of PEFR of greater than 20% is an alert indicating a possible impending asthma attack.

Vitalograph Spirotrac

The Vitalograph Spirotrac Windows® spirometry software system is a simple to use yet powerful software system that offers:

- Automated & secure spirometry data management
- 50 user configurable indices
- Unlimited subjects and databases
- Multi-user network or stand alone PC
- Serial trend for early detection

Spirotrac software gives instant access to all spirometry data, serial trend data against the test subject’s own normal values, flexible protocol challenge testing and much more.
Millions of people around the world have COPD; most of them don’t know it.

The Vitalograph copd-6 enables the primary care team to ‘case select’ potential COPD patients. The copd-6 simply, quickly and cost-effectively identifies those patients that do not have COPD, allowing diagnostic resources to be focused on those most at risk.

For more information on the copd-6 call +44 (0) 1280 827 120

Email: sales@vitalograph.co.uk
www.vitalograph.co.uk

Vitalograph® and copd-6™ are trademarks of Vitalograph