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a b s t r a c t

Chronic obstructive pulmonary disease (COPD) is characterized by an incompletely reversible

airflow limitation that results from a combination of airway wall remodeling and emphyse-

matous lung destruction. Forced expiratory volume in 1 s (FEV1) has been considered the gold

standard for diagnosis, classification, and follow-up in patients with COPD, but it has certain

limitations and it is still necessary to find other noninvasive modalities to complement FEV1 to

evaluate the effect of therapeutic interventions and the pathogenesis of COPD. Quantitative

computed tomography (CT) has partly met this demand. The extent of emphysema and airway

dimensions measured using quantitative CT are associated with morphological and functional

changes and clinical symptoms in patients with COPD. Phenotyping COPD based on quanti-

tative CT has facilitated interventional and genotypic studies. Recent advances in COPD findings

with quantitative CT are discussed in this review.

& 2012 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) was estimated

to have caused approximately 2.75 million deaths and 27.76

million disability-adjusted life years worldwide in 2002 [1].

COPD is expected to be the third leading cause of death and

the fifth leading cause of morbidity in the world by the year

2020 [2]. The pulmonary component of COPD is characterized

by airflow limitation that is not fully reversible [3]. Airflow

limitation is defined by pulmonary function test results and

is caused by narrowing of small airways [4,5], which is a

consequence of a combination of airway wall thickening due

to airway wall remodeling and loss of tethering force due to

emphysematous lung destruction [6]. To fully evaluate these

morphological abnormalities in patients with COPD, lung

specimens are needed. However, lung biopsy is not a feasible

option for most patients who participate in cross-sectional or

longitudinal studies [7]. With advances in computed tomo-

graphy (CT) technology combined with visual scoring sys-

tems or CT image analysis programs, i.e., computer

algorithms that can be used to analyze CT data, herein

referred to as quantitative CT, these morphological changes

can now be analyzed in detail in a relatively non-invasive

manner. Quantitative CT in COPD has been used to evaluate

severity of emphysema, and to assess airway dimensions and

small pulmonary vessels on CT images. These methods allow

for comparison of CT abnormalities between patients or

observation of progression of disease within a single patient.

Recent findings in COPD using quantitative CT are discussed

in this review.
2. Extent of emphysema

Emphysema is characterized by permanently enlarged air-

spaces distal to the terminal bronchiole with destruction of

the alveolar wall [8,9]. It is generally classified as centrilob-

ular, panlobular, or paraseptal [10,11]. The CT appearance of

emphysema features low attenuation areas (LAAs) [12,13]. In

order to quantify severity, the percentage of low attenuation

areas (LAA%), which implies the extent of emphysema, is

calculated. The LAA% of each CT section is the ratio of the

LAAs to the total lung area multiplied by 100 [14].

Initially, the extent of emphysema visualized was quantified

as an emphysema score. The emphysema score of a section is

0 if its LAA% is o5%, 1 from 5% to o25%, 2 from 25% to o50%,

3 from 50% to o75%, and 4 if Z75% [15]. However, this method

is time-consuming and generates intra-observer and inter-

observer errors [16]. Now, CT image analysis programs have
been developed to segment the lung parenchyma and measure

lung density on CT images. The extent of emphysema quanti-

fied using these programs is based on threshold cut-off

methods, also known as density mask [14,17–19] or percentile

point methods [20–25]. The ‘‘density mask’’ method is used

more often. This method uses overlay masks to distinguish

the location and size of emphysematous lesions on the CT

images (Fig. 1). With this method, LAA is defined as the total

number of pixels (for 2-dimensional images) or voxels (for

3-dimensional images) that demonstrate lung attenuation

below a certain threshold [19] that is predetermined in

accordance with lung volume at scanning, slice thickness,

and reconstruction algorithms and can range from �856 HU to

�960 HU [14,17–19]. LAA% quantified by these methods corre-

lates well with the extent of emphysema quantified by visual

scoring systems [19,26] and macroscopic [16,17,19,25] and

microscopic measurements [18,25]. Because LAA% is affected

by CT machine calibration [27], lung volume at scanning

[24,28–30], reconstruction slice thickness [22], and reconstruc-

tion algorithm [31], these factors should be controlled for valid

results in longitudinal studies.

LAA% quantified on CT scans at full inspiration is associated

with forced expiratory volume in 1 s (FEV1), ratio of FEV1 to

forced vital capacity (FEV1/FVC), residual volume (RV), diffusing

capacity of the lung for carbon monoxide (DLCO), and ratio of DLCO to

alveolar volume (DLCO/VA) [32–37]. These relationships reflect

the contribution of emphysema to airflow limitation and

reduced diffusing capacity in COPD. LAA% can be estimated

from a model that includes FEV1 and DLCO/VA [34,35]. Some

investigators have also shown that LAA% quantified at full

expiration correlated more closely with pulmonary function

tests, especially with RV/total lung capacity (TLC), which

reflects air trapping in COPD, than LAA% quantified at full

inspiration [32,38–42]. They argue that LAA% quantified at full

expiration reflects both air trapping and emphysema in COPD.

Nonetheless, because lung CT scans are generally performed

at full inspiration in routine practice, in most ongoing studies,

LAA% is still quantified at full inspiration rather than at full

expiration.

Clinically, LAA% is higher in males than in females [43,44],

and it increases with increasing age and number of pack-

years of smoking [44]. LAA% correlates negatively with body

mass index (BMI) [45–47] and positively with degree of

dyspnea [33]. Furthermore, LAA% complements FEV1 in

explaining the severity of dyspnea [48].

Emphysema quantification has been applied to longitudi-

nal studies as well as cross-sectional studies. In 144 patients

with COPD who were followed for 30 months, detection of

emphysema progression was found to be 2.5-fold more
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sensitive with lung densitometry than by FEV1 or gas diffu-

sion [49]. In another study, 60 patients with COPD were

prospectively monitored for exacerbations for 2 years. The
annual increase in LAA% was significantly greater in patients

with exacerbations than in patients without exacerbations

(Po0.0001), while there was no difference in the FEV1%

decline between the 2 groups (P¼0.40) [50]. A greater extent

of emphysema at baseline CT scanning was associated with

higher rates of lung function decline in obstructed and non-

obstructed smokers after 3 years of follow up. The extent of

emphysema at baseline CT scanning also helped to identify

non-obstructed smokers who were predicted to develop air-

flow obstructions [51].

Emphysema assessment by quantitative CT is a good

predictor of mortality in COPD patients. A higher LAA% has

been associated with increased mortality from respiratory

diseases [52]. In addition, emphysema can be a predictor of

comorbidity in patients with COPD. LAA% has been corre-

lated with bone mineral density of the thoracic vertebrae as

measured by CT densitometry [53]. The presence of visual or

quantitative emphysema is associated with osteoporosis of

the lumbar and hip bones detected by dual-energy X-ray

absorptiometry [54]. The presence of emphysema assessed

using a visual scoring system is also associated with lung

cancer in smokers. This association remains significant after

adjusting for age, sex, smoking history, and level of airflow

limitation [55–57]. Emphysema severity is also associated

with arterial stiffness, a marker of cardiovascular risk. This

association is independent of age, sex, smoking history,

airflow limitation, or systemic inflammation [58,59].

The extent of emphysema is quantified for the whole lung

and for lung regions such as core (inner) versus rind (outer)

regions [37,60], upper versus lower regions [60], or even for

each lobe within the lung [61]. This application of quantita-

tive CT helps in selecting candidates for lung volume reduc-

tion surgery (LVRS) and provides insights into the

mechanisms of improvement after LVRS. In a subgroup of

21 patients with severe COPD who underwent LVRS, post-

operative changes in FEV1 and maximal exercise capacity

correlated with extent of preoperative emphysema of the

whole lung [60,62,63] and the upper [62], and upper-rind

regions of the lungs [60]. The volume reduction in regions

with severe emphysema [63] or with confluent emphysema

[62] has been cited as a mechanism of improvement after

LVRS. However, with multiple regression analysis, only the

extent of emphysema of the upper-rind region of the lungs

was a significant predictor for improvement of pulmonary
Fig. 1 – Quantification of emphysema using the density mask

method. Emphysematous lesions are masked with different

colors depending on the pulmonary lobes (red for right upper

lobe, purple for right middle lobe, dark yellow for right lower

lobe, green for left upper lobe, and blue for left lower lobe).

(A) Axial section image. (B) Coronal section image. (C) Three-

dimensional image, with the spheres representing the sizes

of the emphysematous lesions. These images were obtained

from a 79-year-old male patient with stage III COPD using

Pulmonary Workstation 2.0 (VIDA Diagnostics, IA, USA) and

reconstructed with 1-mm slice thickness and a standard

algorithm. The threshold cut-off for emphysema was

�950 HU. The percentage of low attenuation area (LAA%) in

this patient was 15%.
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function after LVRS [60]. This result was repeated in a recent

study with 546 patients [64]. However, the magnitude of these

correlations was very small (R2
¼0.15 for prediction of FEV1

change and R2
¼0.16 for prediction of maximal capacity

change), which has raised concerns about the clinical appli-

cation of the result.

Besides the values of quantitative CT for patients with

COPD, we should also be aware of the risk of radiation

exposure. Because of the concern that repeated CT scans

over time may be associated with consequent cancer risk [65],

several investigators have proposed low-dose CT scans

(30–60 mA s) as an alternative to standard-dose CT scans

(100–250 mA s) in the quantification of emphysema. They

found that even though the mean noise level was greater

with low-dose than with standard-dose CT, there was a good

correlation of LAA% between the 2 protocols [66,67]. At most

thresholds of emphysema, the LAA% was greater on low-dose

than on standard-dose scans [22,66], but the difference might

not be clinically important [66]. However, because the effect

of radiation dose on LAA% varies depending on lung volume

[68] and slice thickness [22], these 2 factors should be taken

into account when comparing LAA% between scans with

different radiation doses.

In summary, the extent of emphysema as determined by

quantitative CT correlates with macroscopic and microscopic

measurements of emphysema, pulmonary function tests,

and clinical symptoms. Emphysema evaluation using quan-

titative CT has been applied for selecting candidates for LVRS

or for phenotyping COPD patients for ongoing studies, which

we will discuss in the final section of this review.
3. Quantification of airway dimensions

Quantification of airway dimensions in COPD is used to

evaluate airway wall thickening and lumen narrowing. The

severity of these histologic changes correlates with the

severity of COPD evaluated according to the Global Initiative

for Chronic Obstructive Lung Disease (GOLD) [4]. Therefore,

several CT image analysis programs have been developed to

measure airway internal area (Ai) and airway wall area (Aaw)

on CT images. Further indexes of airway dimensions includ-

ing airway outer area (Ao) (Ao¼AiþAaw) and the percentage

of wall area (WA%) [WA%¼ (Aaw/Ao)�100] can also be

derived from these measurements. The algorithm for detect-

ing airway lumen is based on the density mask method, and

threshold values for airway lumen vary from �500 HU to

�577 HU [69]. Algorithms for detecting the inner and outer

margins of airway walls are based on different methods

including full-width at half-maximum [36,70], maximum-

likelihood [71], score-guided erosion [69], Laplacian of Gaus-

sian [72], and fitting ellipses [73]. These programs have been

validated in phantom studies and in excised pig, sheep, and

human lungs by micrometer measurements and manual

estimation [69,72–74]. Initially, these programs were limited

to quantifying the dimensions of airways with ratios of

longest-to-shortest diameters of less than 2.0 on

2-dimensional CT images [36,72,75,76]. This limitation was

intended to avoid underestimating Ai and overestimating

Aaw, especially for small airways [69,71]. However, it reduces
the count of measurable airways on each CT image or the

whole lung [73]. Since the advent of multi-slice CT scanners

and volumetric CT scanning methods, the bronchial tree can

now be reconstructed using 3-dimensional CT analysis pro-

grams. These programs can be applied to measure the airway

dimensions of nearly all visible airways at specific locations,

even those that are not oriented perpendicularly to the axial

plane (Fig. 2) [73,74,77–80].

Initially, due to limitations of CT resolution and analysis

programs [36,81,82], only segmental bronchi (third genera-

tion) were evaluated. Presently, bronchi up to the 6th gen-

eration have been measured in patients with COPD using CT

analysis programs [74,77,78]. Even though these measured

locations are not at the site of obstruction in COPD [4], the

correlation between airway wall areas of relatively large

airways measured by CT and those of small airways mea-

sured by histology analysis has justified these evaluations in

COPD [75]. The strong correlation of airway dimensions

obtained using CT and optical coherent tomography further

supports the usefulness of quantitative CT in the determina-

tion of airway dimensions [83]. However, to date, no con-

sensus has been reached about locations and counts of

measurable airways for quantification of airway dimensions

in COPD. Some investigators evaluate only the apical

bronchus of the right upper lobe [36] because airway dimen-

sions at this location correlate with those at the basal

bronchus of the right lower lobe [82], and both are perpendi-

cular to axial CT sections. However, because the WA% of the

anterior basal segmental bronchus of the right lower lobe

correlates with FEV1 more closely than that of the apical

segmental bronchus of the right upper lobe [77], others have

measured representative bronchi for each lobe [70,81,84,85],

or even as many bronchi as possible [76,78,86,87]. When

measuring airway dimensions at different locations along

each bronchus and/or along different bronchi, the mean or

median of all these measurements is estimated to provide

values for each subject [76,78,86]. However, this method

neglects the heterogeneity of airway dimensions between

generations along each bronchus [70,77,88] or between dif-

ferent lobes in patients with COPD. To solve this problem and

to generate comparable results in cross-sectional or long-

itudinal studies, the square root of the wall area of a

hypothetical airway with an internal perimeter of 10 mm

(OAaw at Pi10) has emerged (Fig. 3) [75]. This index of airway

dimensions correlates with pulmonary function tests and

clinical symptoms [48,81,87].

WA%, Ai, and OAaw at Pi10 are common indexes of airway

dimensions, and have been used in many studies relating to

COPD. WA% and OAaw at Pi10 represent airway wall thicken-

ing or remodeling. Ai represents lumen narrowing due to

airway wall thickening, luminal inflammatory exudates, and/

or loss of parenchymal tethering in patients with COPD. WA%

[36,70,77,86], Ai [70,77,84], and OAaw at Pi10 [87] have all been

correlated with FEV1. The correlation coefficients of WA% or

Ai with FEV1 increase as the bronchial size decreases from

the third to the sixth generation of bronchi [70,77,84].

In addition to the parameters of pulmonary function tests,

airway dimensions also correlate with clinical symptoms in

patients with COPD. Patients with symptoms of chronic

bronchitis are more likely to have higher WA% or OAaw at



Fig. 2 – Quantification of airway dimensions using a 3-dimensional CT analysis program. (A) The bronchial tree and the pathway

of the target airway (in green color) with the location of measurement (gray horizontal plane). (B) Curved multi-planar

reconstruction image of the target airway and the location of measurement (vertical dashed yellow line). (C) An axial section

with airway lumen is masked in pink and the blue arrow indicates the measured bronchus. (D) The inner and outer margins

of the measured bronchus are marked as red and blue circles, respectively. These images were obtained from a 75-year-old

male patient with stage IV COPD using Apollo 1.1 (VIDA Diagnostics, IA, USA).

Fig. 3 – Estimation of OAwa at Pi10. The square root of the wall area of the measured segment is plotted against its internal

perimeter. The square root of the wall area of the hypothetical airway with an internal perimeter of 10 mm (OAwa at Pi10) is

calculated from the linear regression equation. This figure shows the OAwa at Pi10 of the patient in Fig. 2 calculated from all

measured bronchial segments with internal perimeters ranging from 6 to 20 mm. The OAwa at Pi10 was 3.7 mm and the R2

value of the linear regression equation was 0.94.
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Pi10 than patients without these symptoms [48,76,81]. WA%

in patients with COPD is lower than that in patients with

asthma [85], but higher than that in healthy smokers [36] and

non-smokers [86]. OAaw at Pi10 decreases with increasing

age, increases with increasing number of pack-years of

smoking, and is higher in males than in females, even after

adjusting for FEV1 [44].

Very few longitudinal studies have reported quantification of

airway dimensions. In one study, during 4 years of follow-up of
38 patients with COPD, annual changes in WA% were inversely

correlated with annual changes in FEV1 (r¼�0.363, P¼0.025)

[89]. More findings relating to this aspect of airway dimensions

are expected when results of the Evaluation of COPD Long-

itudinally to Identify Predictive Surrogate End-points (ECLIPSE)

[90] and other longitudinal studies are reported in the near

future. Regarding changes in airway dimensions in response to

specific treatment, the relationship of changes between Ai and

FEV1 in response to a 7-day course of tiotropium bromide
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inhalation in 15 patients with COPD was investigated. The

mean percentage Ai increase was correlated with percent

FEV1 increase (r¼0.843, Po0.001). Such correlations were sig-

nificant for the fourth to sixth generation bronchi, but not

among the third generation bronchi [91].

In summary, WA% and OAaw at Pi10 are useful investigative

parameters because they reflect airway wall remodeling and

are associated with levels of airflow limitation and clinical

symptoms in patients with COPD. However, further studies are

still needed to standardize measurements and clarify the

implications of quantification of airway dimensions in COPD.
Fig. 4 – Phenotypes of COPD based on quantitative CT.

Relationship between percentage of wall area (WA%) and

percentage of low attenuation area (LAA%) in 94 patients

with COPD and 20 asymptomatic smokers. The horizontal

line represents the mean þ2SD of LAA% of the

asymptomatic smokers. The vertical line indicates the
4. Quantification of small pulmonary vessels

In addition to evaluation of emphysema and airway dimen-

sions, quantitative CT is applied to quantify small pulmonary

vessels in COPD. Matsuoka et al. used a semi-automated CT

analysis program to segment pulmonary vessels on

2-dimensional CT scans [92–94]. The total cross-sectional area

of small pulmonary vessels (CSA), including subsegmental

vessels (those with cross-sectional area from 5 to 10 mm2,

CSA5–10) and subsegmental vessels (those with cross-sectional

area less 5 mm2, CSAo5), was calculated from selected CT

images. The percentage of total CSA to the corresponding lung

area (%CSA5–10, %CSAo5, respectively) was generated and

correlated other indices. In smokers, %CSAo5 was significantly

correlated with LAA% (r¼�0.83, Po0.0001), FEV1% predicted

(r¼0.29, Po0.0001), and FEV1/FVC (r¼0.45, Po0.0001) [92].

In patients with COPD, %CSAo5 was negatively correlated with

pulmonary arterial mean pressure [93] and thoracic aorta

calcification score [94]. These findings implied that a reduction

in CSA is associated with increased degrees of emphysema,

pulmonary hypertension, and atherosclerosis in COPD.

Contrary to %CSAo5, there was no significant correlation or

only a weak correlation between %CSA5–10 and the other

aforementioned indices in COPD. This finding supports the

notion that alterations in pulmonary vasculature may occur

predominantly in peripheral vessels [92–94].

Evaluation of small pulmonary vessels using quantitative CT

currently has the following limitations: firstly, small pulmon-

ary arteries and veins are not evaluated separately. Secondly,

CSA measurements are affected by several factors, including

cardiac cycle, respiratory cycle, and scanning protocol. Thirdly,

thus far, there are no standard CT scanning protocols or fully-

automated CT image analysis programs that have been vali-

dated to accurately quantify small pulmonary vessels.

In summary, evaluation of small pulmonary vessels using

quantitative CT can reflect pulmonary vascular changes in

COPD patients, but research is still needed in order to certify

the utility of quantitative CT as a non-invasive tool for

assessing pulmonary arterial hypertension and other mor-

phological changes in small pulmonary vessels in patients

with COPD.

mean þ2SD of WA% of the asymptomatic smokers. Using

these cut-off values, patients with COPD can be divided into

3 groups: an airway remodeling-dominant group (high

WA% and low LAA%), an emphysema-dominant group (low

WA% and high LAA%), and a mixed group (high WA% and

high LAA%). Adapted from Nakano et al. [99].
5. COPD phenotypes

The GOLD guidelines for the diagnosis and management of

COPD are mainly based on FEV1% predicted and are useful to
classify disease severity and choose a corresponding treat-

ment regimen [3]. However, even within the same GOLD

stage, patients with COPD will present with different clinical

subtypes depending on BMI, severity of dyspnea, frequency of

acute exacerbations, and response to inhaled corticosteroids

(ICS) or bronchodilators [95–97]. With each subtype, it is

important to choose an appropriate regimen in order to

optimize the cost-effectiveness of the chosen treatment.

If there is no means other than FEV1 for classifying patients

with COPD into specific groups in longitudinal studies, the

effects of certain treatments may not be proved in terms of

primary outcomes [98]. Phenotyping COPD patients based on

quantitative CT findings has partly addressed this concern.
5.1. Airway remodeling-dominant versus emphysema-
dominant phenotypes

Patients with COPD can be divided into 3 groups on the basis

of WA% and LAA%: an airway remodeling-dominant group

(high WA% and low LAA%), an emphysema-dominant group

(low WA% and high LAA%), and a mixed group (high WA%

and high LAA%) (Fig. 4) [99]. From this point of view, several

investigators have tried to phenotype COPD according to

quantitative CT in order to relate these phenotypes to clinical

symptoms and pulmonary function tests. Patients with

symptoms of chronic bronchitis had lower LAA% and higher

WA% than patients without symptoms [76]. Meanwhile,

patients with the airway remodeling-dominant phenotype

had significantly higher BMI, increased wheezing, and better

response to bronchodilators or ICS than those with the

emphysema-dominant or mixed phenotype [96,97]. Patients
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with the emphysema-dominant phenotype showed minimal

reversibility in response to treatment with bronchodilators or

ICS [96,97,100,101]. It is possible that phenotyping COPD

based on quantitative CT analysis may open new avenues

of pharmaceutical research for COPD, possibly facilitating

development of drugs that target the airway wall remodeling

process or the alveolar destruction process [102]. This method

also helps to classify patients with COPD into appropriate

subgroups for interventional trials, and should complement

pulmonary function tests in objective evaluation of outcomes

for those trials while recognizing potential benefits of specific

regimens tailored to the subgroups.

5.2. Phenotypes of COPD based on quantitative CT
for genotypic studies

The genetic component plays a significant role in the patho-

genesis of COPD, which explains why only 15–20% of smokers

develop COPD and why COPD patients of varying ethnicities,

genders, and risk factors have different clinical phenotypes

[3]. Determining which genes are responsible for predisposi-

tion to COPD or which genes determine specific phenotypes

might prove crucial for rigorous prevention, early detection,

and potential cure.

Reproducible COPD phenotypes defined by quantitative CT

can facilitate investigations of genotypes because of the similar

pathogenic mechanisms represented by each phenotype. The

role of genetic control in developing COPD was highlighted in a

study of 519 probands and 640 siblings. The results showed that

emphysema was more prevalent in the siblings of probands

with significant emphysema than in the siblings of probands

without emphysema. OAaw at Pi10 in the siblings was sig-

nificantly correlated with those of the probands [87].

Genetic predisposition to emphysema has been investigated

in several studies. A group-specific component of serum globu-

lin (Gc-globulin) polymorphism has been significantly associated

with susceptibility to COPD and with the severity of emphysema

in a Japanese population [103]. By using a genome-wide associa-

tion study (GWAS) method to identify genetic determinants of

emphysema in Caucasian patients with COPD investigators

identified BICD1 [104] and CHRNA3/5 [105] as novel genes for

emphysema susceptibility in COPD. Matrix Metalloproteinase-9

(MMP-9) polymorphism was also thought to be related to

emphysema, but ultimately this was not proven [106,107]

although it was associated with upper lung-dominant emphy-

sema in Japanese patients with COPD [107]. Apical-predominant

emphysema also appeared to be influenced by various genes

including GSTP1, EPHX1, and certain MMP1 polymorphisms of

xenobiotic metabolizing enzymes in Caucasians with COPD

[108], and other genes have been associated with protective

mechanisms against emphysema. For example, Japanese

patients with COPD who had the �28G allele of the CCL5 gene

had findings associated with milder emphysema [109]. For

Caucasian populations, smokers with a less active form of

MMP-12 may be partly protected from severe emphysema [110].

Because there is no optimal method of quantifying airway

dimensions yet, there have been very few studies investigating

genotypes of the COPD patients with airway remodeling-

dominant phenotypes. One study in 111 patients with COPD in

a South Korean population measured airway dimensions near
the origins of the right apical segmental bronchus and the left

apical-posterior segmental bronchus, and investigators found

that the ADRB2 genotype with a G allele was associated with the

airway remodeling-dominant phenotype [111]. Another study

was conducted to identify the association between 3 loci (HHIP,

FAM13A, CHRNA3/5) and COPD phenotypes in 1609 Caucasian

patients with COPD. Airway wall thickness measurements

(OAawa at Pi10 and WA%) were not associated with any of

these single nucleotide polymorphisms [105].

In summary, the utility of phenotyping COPD patients for

further interventional and genotypic studies has become

more apparent. Reproducible phenotypes of COPD based on

quantitative CT have partly met the demand.
6. Conclusions

CT technology and CT image analysis programs have

improved over time so that quantitative CT studies for COPD

patients are less time-consuming, more convenient, and

more reproducible. These improvements have led to new

findings related to extent of emphysema, airway dimensions,

and condition of the small pulmonary vessels that have been

described in recent years. Phenotyping of COPD based on

quantitative CT has facilitated interventional and genotypic

studies. Minimizing radiation exposure, controlling the uni-

formity of CT scanning parameters, and standardizing the

quantification of airway dimensions and small pulmonary

vessels should be considered. More studies are needed to

address the current limitations of quantitative CT. We antici-

pate that quantitative CT for COPD will be useful not only in

research, but also in routine clinical practice.
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